Available online at www.sciencedirect.com

3 . Robotics and
sc|ENCECDIHEcT Autonomous
Systems

E A

ELS

BT AL
EVIER Robotics and Autonomous Systems 49 (2004) 91-103
www.elsevier.com/locate/robot

Empirical comparison of predictive models for mobile agents™

A.E. Henninger®*, R. Madhavan®-!

2 Soar Technology, Inc., 3361 Rouse Road Suite 175, Orlando, FL 32817, USA
® Intelligent Systems Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8230,
Gaithersburg, MD 20899-8230, USA

Received 27 July 2004; accepted 27 July 2004

Abstract

The need to predict an agent’s intents or future actions has been well documented in multi-agent system’s literature and has
been motivated by both systematically practical and psychologically principled concerns. However, little effort has focused on the
comparison of predictive modeling techniques. This paper compares the performance of three predictive models all developed
for the same, well-defined modeling task. Specifically, this paper compares the performance of an Extended Kalman Filter
(EKF) based model, a neural network based model and a Newtonian-based dead-reckoning model, all used to predict an agent’s
trajectory and position. After introducing the background and motivation for the research, this paper reviews the form of the
algorithms, the integration of the models into a large-scale simulation environment, and the means by which the performance
measures are generated. Performance measures are presented over increasing levels of error tolerance.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Autonomous agents; Trajectory prediction

1. Introduction

Intelligent agents typically operate in an environment populated by other intelligent agents. Agents may help
each other, hinder each other, or ignore each other, often without directly communicating their intent. In order for

* Commercial equipment and material are identified in this article in order to adequately specify certain procedures. Such identification
does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

* Comresponding author. Tel.: +1 407 207 2237; fax: +1 407 207 2113.
E-mail addresses: amy@soartech.com (A.E. Henninger), raj.madhavan@ieee.org (R. Madhavan).

! Fax: +1 301 990 9688.

0921-8890/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2004.07.023



92 A.E. Henninger, R. Madhavan / Robotics and'Autonnmous Systems 49 (2004) 91-103

an agent to achieve its goals, it is thus sometimes necessary for the agent to determine where the other agents are,
what they are doing, and what their plans are. For example, an agent may want to infer what plan an opponent is
executing so that the agent can select countermoves. Han and Veloso [1], Rao {2}, Rao and Georgeff {3], Tambe and
Rosenbloom [4], and Tambe [5] have studied various forms of recognizing an agent’s intents.

Sometimes it is necessary to infer facts that are normally observable, such as agent location, because of sensor or
other limitations. For example, a pilot agent may need to predict where a threat aircraft is flying after it enters a cloud.
There are many approaches to predicting agent trajectories, including Newtonian mechanics [6], neural networks [7],
Hidden Markov Models [8], Extended Kalman Filters [9] and others. This paper addresses a particular application
of trajectory prediction in a simulation environment and compares the effectiveness of three approaches: Extended
Kalman Filters (EKF), neural networks, and Newtonian equations. Unique about this particular comparison is the fact
that the three techniques being evaluated have been implemented over the same data set. Thus, this cross-comparison
enables us to examine the efficacy of results and conclusions drawn by a number of researchers evaluating models
independently.

The remainder of this section defines the trajectory estimation problem in the simulation application and describes
the previous use of Newtonian dead-reckoning models, neural networks, and EKFs for estimating agent trajectories.
Specifically, the following sections present the precise applications of the techniques and the underlying theory of
each of the techniques. The paper then describes the test problem used in this study and finally presents the results
from the comparisons.

2. Newtonian methods

Currently in context of problem described in previous section, dead-reckoning models are used as vehicle
prediction methods. The term “dead-reckoning”, borrowed from navigation, describes the process by which the
position of a ship can be estimated from an earlier known position and the elapsed time and motion since that known
position. Dead-reckoning models build on this concept by applying Newtonian equations of motion to approximate
the state information of a simulated entity.

2.1. Newtonian methods—trajectory estimation

In a Distributed Interactive Simulation (DIS) [10], simulation software for each agent runs independently of
other agents and broadcasts the ground truth about the state of the agent through network packets known as protocol
data units (PDUs). Each simulation in DIS uses trajectory estimation so that the state of the agents does not have
to be broadcast frequently. Lin and Ng [6] explain how dead reckoning can be used to maintain coherence among
entities’ states in a DIS environment.

Fig. 1 shows how at a series of time steps, the true position of an agent computed by the agent dynamics model
(shown by the curve) deviates from a linear dead reckoning model. When the error exceeds the threshold, the models
are brought into correspondence by the issuance of an entity state PDU (ESPDU). Thus in the figure, only three
ESPDUs are broadcast instead of one at every time step.

2.2. Newtonian methods—computational form
Each simulator uses Newtonian equations of motion such as Eq. (1) to predict the trajectory of other agents.

ag X (A)?

> v = vy + ag(A?) D

P = po+(vg x At)+



A.E. Henninger, R. Madhavan / Robotics and Autonomous Systems 49 (2004) 91-103 93

@ exact mode!
A dead-reckoning model

A
Ji-.reshord

Position

| threshold

Time

Fig. 1. DIS dead-reckoning process.

| ModSAF

: Entity Data
E DR Mode! Update
v

State Data
Last »[Dead—Reckoning Model
ESPDU

OIS Network

Fig. 2. Dead-reckoning implementation in ModSAF.

where p is current; position py is initial position; v is current; velocity vg is initial velocity; ag is initial acceleration;
and Ar is elapsed time.

Each simulator also uses the same equation to model the trajectory of its own agent; the output of this equation
can be compared to the output of the true dynamics model for the agent to determine when the models diverge.
When and only when, the error between models reaches a certain threshold, the simulator broadcasts new state
information for its agent. Fig. 2 shows this process in a DIS simulation called Modular Semi-automated Forces
(ModSAF) [11] that was used for our experiments. ModSAF is elaborated in Section 5.

3. Neural networks

Several researchers have worked in modeling human driving skills such as acceleration, steering, and vehicle
following with neural networks [12-14]. A neural network is a collection of simple processors or nodes intercon-
nected with each other that learn from examples and store the acquired knowledge in their interconnections, referred
to as weights. Neural networks can solve a variety of problems related to non-linear regression and discriminant
analysis, data reduction, and non-linear dynamic systems. One of the practical characteristics of neural networks
is that they lend themselves to parallel-distributed processing using simple processing units rather than a complex
CPU. This makes their execution very fast.



94 A.E. Henninger, R. Madhavan / Robotics and Autonomous Systems 49 (2004) 91-103

DIS Network

Fig. 3. Visual attention for helicopter agent.

3.1. Neural networks—trajectory estimation

Hill et al. report on a system to generate short-term predictions of an agent’s trajectory such that it can be used
to predict the agent’s position at any future instance, given some window of time [7]. They use this model as part
of a helicopter agent’s perceptual system to enhance the agent’s ability to visually track ground vehicles, and their
motivation for this model is both psychologically and practically rooted. Psychologically, this model can be used to
simulate a helicopter pilot’s gaze shifting as he attempts to visually track and require multiple targets, Thus, instead
of operating in a state of omniscience, the agent is required to juggle the act of determining spatial information
across multiple agents, as would be the human helicopter pilot. The functional ramification of this approach is that
the total number of perceptual inputs to the agent is reduced at any given instance. In other words, instead of getting
continuous perceptual information on all of the ground entities within the helicopter agent’s field of view, by using
this predictive model, the agent only requires updated information on entities when its attention is focused on those
entities.

The high level architecture of this system is presented in Fig. 3. The agent architecture is embedded in the
ModSAF simulator, a system used by the military for training and research. The agent’s intelligence is modeled in
Soar [15].

Citing terrain and cultural features (e.g., roads and bridges) as complicating the trajectory, Hill et al. [7] reject the
use of simple linear projections, such as first-order Newtonian equations, and recursive state estimation techniques,
such as Kalman filters. They instead consider the use of neural network-based models. The inputs to the neural
networks developed for this application consist of entity data (e.g., call-sign, sim-time, position, velocity, etc.) and
abstracted terrain information germane to both “on-roads” and “cross-country” travel and correlated to the entity’s
visual field (hill, road, lake, etc.).



A.E. Henninger, R. Madhavan / Robotics and Autonomous Systems 49 (2004) 91-103 95

All together, the input vector consists of 196 fields and the output vector consists of 15 output fields corresponding
to discretized changes in heading ranging from —35° to 35°. The selected heading change, coupled with an assumed
constant speed and “delta” time since last prediction, can be used to predict the entity’s expected location at some
time (#). This prediction, as derived from “on-roads™ scenario, enables the virtual helicopter pilot to look away from
the ground entity for up to 7s with a reported error tolerance of 15 m.

3.2. Neural networks—computational form

The multi-layer feed-forward network is one of the more typical network designs used in neural network appli-
cations. The network used in this investigation was a four-layer feed-forward network, with seven nodes in the first
layer representing each dimension of the input vector, one node in the last layer representing the output, and a two
hidden layers consisting of 20 nodes in the first hidden layer and 5 nodes in the second hidden layer. This network
attempts to develop a matching function between the input and output vectors by using some training algorithm. The
training algorithm used in this research is a method known as back-propagation. This method is based on finding
the outputs at the last layer of the network, calculating the errors between the actual and the predicted outputs, and
then adjusting the network weights to minimize the error. Weight changes are implemented in a backward fashion
starting from the weights converging to the output layer and proceeding backwards to the weights that converge to
the hidden layer closest to the output layer. These computations are repeated such that the error is propagated back
until the weights converging to the hidden layer closest to the input layer are reached.

In short, back-propagation involves a two-step process. The first step, the forward pass, propagates the effects of
the inputs forward through the network to reach the output layer. This step is governed by three forms of equations.
For the 7-20-5-1 architecture used in this study, Eq. (2) shows the total weighted input to the jth node for pattern p
is given by:

K=7
net"(p) 3 1O pywly)  for j = 11020 2)
k=0

Next, the output of the jth node, yE-])( D), is given by:

Mo\ M -
y; (p) = glnet; " (p)) = T o—mern) (3)
where g () is the commonly used sigmoid function illustrated in Fig. 4.
The net input to the ith node for pattern p is similar to Eq. (2) and is given by:
J=7
net,@ = Zyy)(p)wg]‘?) for i=1t05 4)

j=0

Fig. 4. Example of sigmoid function.



96 A.E. Henninger, R. Madhavan / Robotics and Autonomous Systems 49 (2004) 91-103

and the output of the ith node of hidden layer 2 due to pattern p, ygz)(p), is given by:
2 1
¥(p) = gnetP(p)) = ———5— (5)
. + e et (p)

where g () is again the sigmoid function.
Finally, the net input to the Jth node for patternp is also similar to Eq. (2) and is given by:

I1=7
3
netl(3)(p)z yfz)(p)wfli) for =1 (6)
i=0

and the output of the ith output node due to patternp, yi(p), is given by:

Y (p) = net®(p) )

which in this instance is not transformed, and thus is the same as the input.
Next, the error function associated with the pth input/desired output {x(p), dj(p)} pair, is given by:

L=]
1
Erw) =5 3 [ - Worn @®)
=1

Once the error is computed, the weights are adjusted such that EP is minimized. This occurs in the second pass,
the backward pass, by computing the negative gradient of the error function and taking the partial derivatives of this
function with respect to the weights (Egs. (9-11)).

3 JE
pwf) =~ | = ©
P ()
2 oF
Aw,(-j) =7 (——(5) _ (10
Bw,-j
oFE
Aw.(]-}() = -7 (_—(1)> an
Bwjk

where 7 is a user defined parameter.

These equations allow errors at the output layer to be propagated backward toward the input layer in proportion
to the change in activity at the previous layer. By applying the chain rule of derivation as in [16] Egs. (9)-(11)
reduce to:

Awi = nsP(pP(p) I=1 i=1t05 (12)
where

52p) = g nerXENED () — YO Aw? = n8P(p)y(p)i = 1105 j = 11020 (13)
where

L=1
82(p) = g mePp) Y wPs P (p)  awl = s (pu(p) j=11020 k=1107 (14)
=1



A.E. Henninger, R. Mudhavan / Robotics and Autonomous Systems 49 (2004) 91-103 97

Each of these weight adjustments directs the network towards a solution to the input/output mapping. That is,
these weights are training the network to produce a certain output given a set of inputs. This is one of the fundamental
benefits of the neural network approach. With the proper training and representation, the network will self-organize
to arrive at a mapping of how the responses are formed and there is no need to acquire and represent an expert’s
knowledge in terms of rule sets.

4. Extended Kalman filters

Kalman’s prediction theory allows the computation of the best estimate of a future system state by using the
most recent estimates of system state along with the system model. With appropriate interpretation, covariance
analysis inherent in the Kalman filtering techniques serves as confidence measure indicative of the uncertainty in
the predicted system states. Kalman filtering thus provides a convenient measure of prediction accuracy through the
covariance matrix. The extension of the linear Kalman filter to a non-linear system is termed “extended” Kalman
filtering and it is obtained through the linearization of the non-linear state and observation equations. The strength
of using an EKF is that it provides a covariance matrix that is indicative of the uncertainty in the prediction.

4.1. Extended Kalman flters—trajectory estimation

Madhavan and Schlenoff [9] report on a system developed for use within the 4D-Real-Time Control System
(RCS) [17] reference model architecture. This system was developed to generate short-term predictions of moving
objects trajectory such that it will support the planning required for unmanned ground vehicles (UGVs) to move
efficiently and dynamically avoid collisions in the presence of dynamic objects with unknown trajectories.

The data being recorded for the moving object includes:

Current location: x, y, and z locations as well as terrain type
Dimensions

Velocity

Color: most predominant color, where appropriate

Motion pattern: based on multiple concurrent sets of position data

To test the prediction algorithms developed in this effort, Madhavan et al. implemented the algorithms in the
OneSAF testbed (OTBSAF), a successor to ModSAF. In doing so, they use data from OTBSAF under the assumption
that UGV has “perfect sensor data”. In other words, the data listed above are supplied with no associated uncertainty.
To compensate for this, they implemented a noise model in OTBSAF to use for sensor data.

While they do not specify resuits and associated errors, the authors acknowledge that, as expected, the associated
uncertainty with predicted position increases as the prediction time horizon increases. Because the confidence in
their estimates decreases as the planning horizon increases, they suggest the use of a threshold to determine the
point at which the algorithm no longer provides adequate estimates to support safe path planning. Deriving this
threshold is the subject of future research.

4.2. Extended Kalman filters—computational form

In the context of this paper, the state vector x is comprised of the predicted position and orientation of the vehicle.
In view of the availability of data at discrete instants of time, a discrete-time formulation of the continuous-time
vehicle kinematics models is necessary. To formulate a Kalman filter algorithm, process and observation (mea-
surement) models are needed. In discrete-time, only discrete sampling instants #y, f1,. . . are considered. Integrating
the continuous-time process model between two consecutive time steps usually derives the discrete-time process



98 A.E. Henninger, R. Madhavan / Robotics and Autonomous Systems 49 (2004) 91-103

model. A general discrete-time process model can be expressed as:
xk = f(xp—1 ug, k) + wy s)

where f(..., k) is a discrete function that maps the previous state and control inputs to the current state, X is the state
at time instant k, vy is a known control vector, and wy is the discrete process noise. The process noise is assumed
to be a Gaussian-distributed random variable of zero mean and constant covariance.

Observations of the state x; are made according to the observation model:

zx = h(xp, k) + vk (16)

where h(..., k) is the discrete function that maps the current state to observations. v is the measurement noise source
and plays a similar role in the observation model to the role played by the process noise in the process model. It
accounts for effects that are not modeled explicitly and is assumed to be a Gaussian-distributed random variable of
zero mean and constant covariance. '

In an autonomous vehicle navigation context, the prediction stage uses a model of the motion of the vehicle (a
process model having the form described in Eq. (15) to predict the vehicle position, X(kjk — 1), at instant k given
the information available until and including instant k — 1. The state prediction function f(.) is defined by Eq. (15)
assuming zero process and control noise. The prediction of state is therefore obtained by simply substituting the
previous state and current control inputs into the state transition equation with no noise. The predicted covariance of
the vehicle, P x—1), is computed using the Jacobian of the state propagation equation linearized about the current
vehicle state estimate.

Once the state and covariance predictions are available, the next step is to compute a predicted observation and
a corresponding innovation for updating the predicted state. The difference between the actual observation and the
predicted observation at time step & is termed the innovation and is written as:

vk = Zi — L1 an

The innovation covariance is found by squaring the estimated observation error and taking expectations condi-
tioned on the first (k — 1) measurements

S, = thkP(klk—l)Vh){k + Ry (18)

The observations that arrive are accepted only if the observation falls inside the normalized innovation validation
gate given by:

v{S;lvk <&y (19)

where vy is the innovation defined as the difference between the actual and predicted positions. The value of sy can
be chosen from the fact that the normalized innovation sequence is a % random variable with m degrees of freedom
(m being the dimension of the observation). Once a validated observation is available, the update of the estimate
equal to the weighted sum of the observation and the prediction can be computedas:

Ry = Xegje—1y + Wivg (20)

where W, is the Kalman gain matrix determined by the relative confidence in vehicle prediction and observation
and determines the influence of the innovation on the updated estimate.
The covariance update is given by:

Py = Pk—r) — WiSi W/ 2n
where the Kalman gain matrix is:

Wi = Parp-1y — Vh,ﬁsk_l 22)



A.E. Henninger, R. Madhavan / Robotics and Autonomous Systems 49 (2004) 91-103 99

Fig. 5. Route used for experiment.

5. Methodology

This paper compares the performance of three models based on neural-networks, extended Kalman filters, and
Newtonian dead-reckoning. Like the systems described in sections on dead-reckoning and neural networks for
trajectory estimation, this experiment is conducted with a data set generated in ModSAF, a training and research
system developed by the Army’s Program Executive Office for Simulation, Training, and Instrumentation Command
(PEO STRI). ModSAF provides a set of software modules for constructing computer-generated force behaviors at
the company level and below. Typically, ModSAF models are employed to represent individual soldiers or vehicles
and their coordination into orderly-moving squads and platoons; but, their tactical actions as units are planned
and executed by a human controller. The human behaviors represented in ModSAF include move, shoot, sense,
communicate, tactics, and situation awareness. The authoritative sources of these behaviors are subject matter experts
and doctrine provided by the Army Training and Doctrine Command (TRADOC). ModSAF uses state transition
constructs inspired by finite state machines (FSMs) to represent the behavior and functionality of a process for a
pre-defined number of states.

The scenario used for the comparison was a road-march for a tank entity 45-segment route shown in Fig. 5. Itis
approximately 7 km long and takes a tank entity about 15 min of simulation time to travel at a March Order speed of
8 m/s. From this 15 min period, a total of 13,760 movement updates were performed, generated at a rate of 15 Hz.

5.1. Neural network implementation

For this application, a feed-forward architecture developed with back-propagation training was used to develop
the neural network that predicts the change in an entity’s speed. The network used a sigmoid function at the hidden
nodes and a linear transformation at the output nodes. The configuration of the network in each of the models may
be seen in Table 1 where the inputs were normalized according to Eqgs. (23)-(39) below. Fundamentally, the inputs
for the network were a function of the entity’s state at the last simulation clock and how this state related to the road
characteristics (width, heading, length of segment, etc.) and March Order parameters (speed, end-point, etc.).

The specific predictors are expressed in Egs. (24)~(31), and the parameters making up those inputs are explained
in Egs. (32)-(39).

St = S-~1+ AS; where AS; = f(Ra;—1, Rbi_1, Rer1, Rp;—1, Rs;_1, HRab;—, HRbe, 1, Hz;—1)  {(23)

TR



100 A.E. Henninger, R. Madhavan / Robotics and Autonomous Systems 49 (2004) 91-103

Table 1
Neural network architecture
Model ] Speed
Arch 8-20-5-1
Predictors Ra,_1, Rb,_1, Re,—1, Rpi—1, Rsi—y, HRab,—\, HRbc,_y, Hz;—y
Resp AS,
S
Ry = ———— (24)
(Da; + M)
S
Rby = ————— (25)
(Db, + M)
S
Ry = ——— (26)
(Dey + M)
S P, '
Rpi==- @7
S
RS; = 'A—; (28)
HRab, = Hab, x Hxy, (29)
HRbc; = Hbc, x Hxy, (30
S; = entity speed at ¢ (31
Da, = distance to previous waypoint (32)
Db, = distance to current waypoint 33)
Dc; = distance to next waypoint (34
M = march order speed (35)
P, = perpindicular distance to road (36)
Hab, = direction of road segment ab (37
Hbc, = direction of road segment bc (38)
Hxy, = entity orientation (39

Of the 13,760 simulated movement updates, 860 examples were used for training the speed network and 859
examples were used for validating the training. The training rate was selected as 0.01 and the initial momentum
parameter was 0.9. The momentum parameter was periodically adjusted to speed the rate of descent along the error
surface. The training and validation results for each of the networks may be seen in Table 2.

Table 2
Training and validation errors

AS error (m/s)
Training 0.259977 + 2.04558

Validation 0.206374 + 0.82532




A.E. Henninger, R. Madhavan / Robotics and Autonomous Systems 49 (2004) 91-103 101
5.2. Extended Kalman filter implementation

The kinematic vehicle model of the form shown in Eq. (15) is used to predict the positions (x,y) of the vehicle
and the ground truth estimate is used for the orientation prediction directly. The position of the vehicle is predicted
until the errors exceed a defined threshold.

Once the errors are above a given threshold, an update is deemed to be performed by utilizing the observations
from ModSAF. We check the validity of the observation by testing if it falls within the normalized innovation gate.
A validated observation is then used to update the states of the EKF and the estimation cycle continues as before.

5.3. Newtonian dead-reckoning implementation

A first-order Newtonian dead-reckoning equation was implemented as shown in Fig. 2. This implementation
facilitated measurement of other models. That is, by simply replacing component “dead-reckoning model” with
other models, a fair comparison between models was available.

6. Results

The neural network models and extended Kalman filter models were implemented in such a way that their
performance for predicting entity location could be compared with the dead-reckoning model. An error is generated
in our system according when the entity’s actual location is greater than 0.5 m away from the model’s predicted
location for the entity. Using these error thresholds, the neural network models required 170 updates, the extended
Kalman filter model required 240 updates, and the Newtonian model required 267 updates. This information is
presented in far left column of Fig. 6.

To further examine the relationship between the predictive power of the dead-reckoning models and this set of
neural network models, we conducted experiments over a range of error tolerances. So, whereas the initial results
were measured according to an error tolerance of 0.5 m, follow-on tests incremented these error thresholds to
examine model utility over increasing error tolerance. As evidenced by the progression of columns of Fig. 6, as
the error tolerance increases, the predictive advantage that more sophisticated modeling techniques (i.e., NNs and
EKFs) have over dead-reckoning models becomes less significant for this modeling task.

| DR & EKF NN

Number Updates Required

05 1 2 4 8 16
Error Tolerance (in meters)

Fig. 6. Number of updates required by NN, EKF, and DR models.



102 A.E. Henninger, R. Madhavan / Robotics and Autonomous Systems 49 (2004) 91-103
7. Summary and conclusions

While a first step in the comparison between tracking models, this analysis is not complete. Still needed are
processing times for models and a sense of how well they generalize to other types of terrain and roads.

This analysis does confirm, generally, that the more complicated a mode} becomes in terms of numbers of factors
and non-linear terms, the more it tends to do a better job at predicting the source model. Along those lines, one
might expect processing time requirements to be inversely related. That is, as the more complicated the model gets,
the more processing time it will require. Assuming this is true, the results reported above suggest heuristics for
when to apply which modeling technique. For example, in an application where processing time is not the primary
constraint e.g., multi-agent systems communicating over a wireless network, then the increased processing costs
incurred from using a neural network may be defendable given the high cost of communications. Alternatively, in
an application where processing time is a limiting factor, then dead-reckoning models may be the more prudent
approach. It is interesting to note, also, that the difference in predictive utility of the modeling approaches becomes
less prominent as the error threshold is increased. This speaks to the power of dead-reckoning models to generalize
and scale. '

It is important to recognize, of course, that the modeling task in this research is limited in scope. Also, a different
NN or EKF configuration could have yielded different results. We cannot claim that these are the best configurations
for this specific modeling task. Other configurations may be better. Also, combinations of approaches may be better.
For example, one approach advocated in the control literature [18,19] is to employ modular models such as mixing
different modeling techniques as they best apply to the problem locally. In the problem discussed in this paper, one
interesting test would be to use a less computationally expensive model in the straight parts of the road database
and then use another model to guide the turns, as previous work [20] has suggested that this appears to be where
the majority of updates are required.

References

[11 K. Han, M. Veloso, Automated robot behavior recognition applied to robot soccer, in: Sixteenth International Joint Conference on Artificial
Intelligence. Workshop on Team Behaviour and Plan Recognition, 1995, pp. 53-64.
[2] A. Rao, Means-end plan recognition, in: Proceedings of the KR-94, the Fourth International Conference on Principles of Knowledge
Representation and Reasoning, 1994.
[3] A. Rao, M. Georgeff, BDI agents: from theory to practice, in: Proceedings of the First International Conference on Multi-Agent Systems,
San Francisco, CA, 1995.
[4] M. Tambe, P. Rosenbloom, RESC: an approach for real-time, dynamic agent tracking, in: Proceedings of the IJCAI 95, 1995.
[S] M. Tambe, Tracking dynamic team activity, in: Proceedings of the AAAI-96, 1996.
[6] K. Lin, H. Ng, Coordinate transformations in distributed interactive simulation (DIS), Simulation 61 (§) (1993) 326-331.
[7} R W.Hill, Y. Kim, J. Gratch, Anticipating where to look: predicting the movements of mobile agents in complex terrain, in: Proceedings
of the 2002 Autonomous Agents in Multi-agent Systems (AAMAS) Conference, Bologna, IT, 2002, pp. 821-827.
[8] R. Washington, Markov tracking for agent coordination, in: Proceedings of the Second International Conference on Autonomous Agents,
Minneapolis/St. Paul, MN, 1998.
[9] R. Madhavan, C. Schlenoff, Moving Object Prediction for Off-road Autonomous navigation, in: Proceedings of SPIE: unmanned Ground
Vehicle Technology V, Orlando, FL, 2003, pp. 134-145.
[10] DIS Steering Committee, The DIS Vision: A Map to the Future of Distributed Simulation, Technical Report, IST-ST-94-01. Institute for
Simulation and Training, University of Central Florida, 1994.
[11] R.B. Calder, J.E. Smith, A J. Courtemanche, ].M. Mar, A. Ceranowicz, ModSAF Behavior Simulation and Control, in: Proceedings of the
third Conference on Computer Generated Forces and Behavioral Representation, Orlando, FL, 1993, pp. 347-356.
[12] E. Fix, H.G. Armstrong, Modeling human performance with neural networks, in: Proceedings of the International Joint Conference on
Neural Networks, vol. 1, 1990, pp. 247-252.
[13] M.C. Nechyba, Y. Xu, Learning and transfer of human real-time control strategies, J. Adv. Comput. Intelligence 1 (1997) 137-154.
[14] D.A. Pomerlau, J. Gowdy, C.E. Thorpe, Combining artificial neural networks and symbolic processing for autonomous robot guidance, J.
Eng. Appl. Artif. Intell. 4 (4) (1991) 279-285.
[15] A. Newell, Unified Theories of Cognition, Harvard University Press, Cambridge, MA, 1990,



A.E. Henninger, R. Madhavan / Robotics and Autonomous Systems 49 (2004) 91-103 103

{16} D. Rummelhart, J. McClelland, Paralle]l Distributed Processing, MIT Press, Cambridge, MA, 1986.

[17] Albus, J. etal., 4D-RCS Version 2.0: A Reference Model Architecture for Unmanned Vehicle Systems. Tech Report NISTIR 6910, National
Institute of Standards and Technology, Gaithersburg, MD 20899.

[18] R. Murray-Smith, T.A. Johansen, Multiple Model Approaches to Modelling and Control, Taylor and Francis, UK, 1997.

[19] K.S. Narendra, J. Balakrishnan, K. Ciliz, Adaptation and learning using multiple models, switching and tuning, IEEE Control Systems
Magazine June (1995) 37-51.

[20] A.Henninger, A. Gonzalez, M. Georgiopoulos, Modeling Semi-automated forces with neural networks: performance improvement through
a modular approach, in: Proceedings of the ninth Conference on Computer Generated Forces and Behavioral Representation, Orlando, FL,
1999, pp. 261-268.

A.E. Henninger is a Senior Scientist at Soar Technology, Inc., where she currently serves as the principal investigator
for the Individual Combatant’s Weapons Firing Algorithm Project at U.S. Army Soldier System’s Command. Prior to
joining Soar Technology, Dr. Henninger worked in the modeling and simulation community as a Staff Scientist at SAIC,
a Research Assistant at the Institute for Simulation and Training, and a Research Fellow for the U.S. Army Research
Institute at (then) U.S. Army STRICOM. She holds BS degrees in Psychology, Industrial Engineering and Mathematics
from Southern I{linois University; MS degrees in Engineering Management and Computer Engineering, from Florida
Institute of Technology and University of Central Florida (UCF), respectively; and a PhD in Computer Engineering from
UCF. Well established in both the multi-agent community and the training/simulation communities, Dr. Henninger serves
as a program reviewer on the Autonomous Agents and Multiagent Systems (AAMAS) and Behavior Representation
in Modeling and Simulation (BRIMS) Conferences and she has most recently has been named the Program Chair
for Interservice/Industry Training, Simulation and Education (I/ITSEC) 2005 Conference. Dr. Henninger’s research
interests include developing high-fidelity computational models of human behavior through human performance data, examining connectionist
and symbolic hybrid representations, and developing metrics to assess the fidelity of behavioral and skill models. Formerly serving as Adjunct
Faculty for the Modeling and Simulation Graduate Degree Prgoram at UCF, Henninger has holds professional memberships in IEEE, ACM, and
SCS, and honorary memberships in Psi Chi, Eta Kappa Nu, and Tau Beta Pi. She has also been honored as a charter and pioneering Certified
Modeling and Simulation Professional (CMSP).

R. Madhavan received the Bachelor of Engineering degree (Electrical and Electronics) in 1995 from the College of
Engineering, Anna University, India and the Master of Engineering (Research) degree (Control and Robotics) in 1997
from the Department of Engineering, The Australian National University, Australia. He received his PhD degree (Field
Robotics) in 2001 from the School of Aerospace, Mechanical and Mechatronic Engineering (Department of Mechanical
and Mechatronic Engineering at the time of completion), The University of Sydney, Sydney, Australia. Since 2001, he
= has been a research associate with the Oak Ridge National Laboratory (ORNL) and is currently a guest researcher with
§ the Intelligent Systems Division of the National Institute of Standards and Technology (NIST). Dr. Madhavan is listed in
Madison Who’s Who, Strathmore Who’s Who, The Contemporary Who’s Who of Professionals, America’s Registry of
Outstanding Professionals, and United Who’s Who. He is also an elected full member of the scientific research society,
Sigma Xi and the Washington Academy of Sciences and a member of IEEE, AAA], AUVSI, and AIME. He was the
Postgraduate winner of the 1998 IEEE Region 10 (Asia and the Pacific) Student Paper Competition and the Graduate
Division winner of the 1998 Society for Mining, Metallurgy and Exploration (SME) Outstanding Student Paper Contest. His current research
interests include autonomous vehicle navigation in complex unstructured environments, performance metrics for intelligent systems, distributed
heterogeneous sensing and systems and control theory.




